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A new combined method adopting the domain decomposition is proposed for analyzing the ion flow field of HVDC transmission 

lines including the effect of the transverse wind. The calculation process of the Poisson equation is iterated with Dirichlet-Neumann 
algorithm to coordinate the solution between adjacent subdomains. The upstream finite element method is used with dense triangle 
mesh in the vicinity of bundles conductors to guarantee the accuracy where the electric field strength changes severely.The upstream 
finite difference method is proposed and the larger uniform quadrilateral grid is applied to simulate the ion flow field in the rest of the 
region to reduce the amount of the mesh elements with a satisfactory precision. Suitable methods and reasonable distribution of the 
grid can be used in different subdomains to improve the calculation efficiency. Finally calculations are well compared with 
experimental data and results in the presence of wind in the previous literature. 
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I. INTRODUCTION 
HE WIND velocity has a significant influence on the ion- 
flow field of HVDC transmission lines. Considering the 

impact of the wind on the ion trajectory, the electric field-
space charge coupled problem becomes more complex. In this 
paper, the ionized field is analysed using the domain 
decomposition method (DDM) including the wind velocity. 
The computed region is split into several subdomains and 
Dirichlet-Neumann algorithm [1] (D-N algorithm) is used to 
calculate the Poisson equation. The small domains near bundle 
conductors are solved by the upstream finite element method 
(FEM) and the triangular elements are used. The rest of the 
region is decomposed into quadrilateral mesh and the 
upstream finite difference method (FDM) is introduced. The 
electric field on one node can be easily obtained and the 
upstream element is determined conveniently with the FDM. 
The distribution of the mesh could be arranged properly with 
the DDM and the number of elements is limited in a 
reasonable extent. The results show reasonable agreement with 
the measured and computed values in previous literature. 

II. CALCULATION METHOD 

A. Bipolar Ion-Flow Field Problem 
For the bipolar lines, the unknowns of the ionized field, i.e. 

the electric potential Φ, the absolute value of the space charge 
densities ρ+ and ρ- are determined by Poisson equation 

0( ) / ερ ρ+ −ΔΦ = − −                         (1) 

and the continuity equations for ion densities 

/eRρ ρ+± −∇ ⋅ =j m                             (2) 

where R is the recombination coefficient and e is the 
elementary charge. The current density j± is defined as 

= ( )kρ± ± ±− ∇Φ ±j W                          (3) 

where k+ and k− are positive and negative ion mobilities 
respectively and W is wind velocity. The following boundary 
conditions are required: The potentials on the conductor 
surface and the ground are the corresponding values; the 
electric field on the conductor surface remains at the corona 
onset value Eon; the potentials on the artificial boundary are 
same as the case of the space-charge-free electric field. 

B. Finite Element-Finite Difference Combined Method with 
Domain Decomposition for Solving Ionized Field 
The size of the computed region is several orders of 

magnitude greater than the area of bundle conductors. A more 
reasonable mesh distribution could be obtained by the DDM 
rather than an automatic mesh generation. Let the whole 
region Ω be portioned into three non-overlapping subdomains, 
i.e., ΩP, ΩN and ΩRS as shown in Fig.1 (a). ΩP and ΩN are the 
small areas surrounding the positive and negative conductors, 
respectively. ΩRS is the rest of the calculation space. The 
interfaces between two subdomains are ΓI,P and ΓI,N, 
respectively. In ΩP and ΩN, the upstream FTM is used with the 
dense triangular meshes. The larger and uniform grid can be 
applied in the domain ΩRS and the upstream FDM (discussed 
in Section II-C) is introduced. The D-N algorithm (present in 
Section II-D) is carried out to solve the Poisson equation in the 
whole domain. 

 
(a)             (b) 

Fig. 1. Combined method with domain decomposition. (a) Computed domain 
of ionized field. (b) Upstream element for FDM. 
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The computational process is described as follows: Firstly, 
the initial charge densities on the conductor surface are set [2] 
and the space-charge-free electric field is calculated. Next, the 
space charge densities are updated with the upstream FEM in 
ΩP and ΩN and using the upstream FDM in ΩRS, respectively. 
According to the new charge densities, the potential of the 
whole region is calculated with D-N algorithm [1]. The charge 
densities on the conductor surface are then modified by the 
approach in [3]. This process is repeated until the Kaptzov’s 
assumption is met and the errors of the ion densities between 
two iterative steps are within the limits. 

C. Calculation of Current Continuity Equation in ΩRS Using 
Upstream Finite Difference Method 
Substituting (2) into (3), we have 
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where V +=-k+·gradΦ+W and V -=k−·gradΦ+W are respect-
tively the mobility velocity of the positive and negative ions. 
The upstream FEM has been present in [2]-[3] with the 
triangle element. For the quadrilateral mesh, the FDM is 
proposed. The nodes j and k are defined as the upstream nodes 
in Fig.1 (b) and for the positive ion density on node i 
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Therefore (4) can be expressed as 
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The non-smaller root ρir of (6) is selected as the positive 
space charge density. During the calculation, the ion densities 
on the nodes in the domain ΩRS are solved one by one from 
the interface to outward nodes. The solution of the negative 
density is similar to the positive case. It is obvious that the 
search of upstream nodes is simple to implement. Moreover, 
when calculating the mobility velocity of the ions, the electric 
field strength on node i can be obtained directly by adopting 
the central difference scheme with high accuracy rather than 
by averaging the values of adjacent elements in the FEM [2]. 

D. D-N Algorithm for Calculating Poisson Equation in Ω  
The Dirichlet-Neumann algorithm is introduced on the 

account of the application of the difference meshes and 
methods in the subdomains. Firstly, the initial values on the 
interface ΓI (i.e. ΓI,P and ΓI,N) are set as the potentials of the 
space-charge-free electric field.  Then the electric fields in the 
subdomains ΩP and ΩN are calculated with the FEM in the 
presence of space charges, respectively. The normal derivative 
on ΓI is modified to be the Neumann boundary condition in 
ΩRS. Next, the potential in ΩRS is analysed by the FDM as a 
mixed Neumann-Dirichlet problem and the new values of the 
potentials on ΓI will be obtained. The iteration loop will be 

carried out until the deviations of the potentials on Γ between 
two steps are within the allowable limit. 

III. VALIDATION AND APPLICATION  
The influences of the wind on the ion current density for a 

±900kV bipolar line and a reduced-scale unipolar model are 
analysed, respectively. The line configurations are seen in [4]-
[5]. The comparisons of the measured data, the previous 
results of the flux tracing method (FTM) and the calculations 
are shown in Fig.2. It indicates that the results of the proposed 
method have reasonable agreements with the measurement. 
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Fig. 2. Ground-level ion current density. (a) Full-scale. (b) Reduced-scale. 

IV. CONCLUSION 
The ion flow field in the presence of wind is analysed with 

the proposed combined method. Proper grids and methods are 
respectively used in different subdomains to reduce the 
amount of the meshes and increase the efficiency of the 
calculation, which will be discussed in the full paper.  
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